
International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019 522
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Random Task Scheduler Algorithms as a
Comparison and Access to the Best to Use

in Real Time
Haeder Talib Mahde Alahmar

ALIraqia University, College of Engineering, Computer Engineering Department, Baghdad, Iraq
haeder.ahmar@aliraqia.edu.iq

Abstract--Today's real-time systems are the core of most ICT applications. The rapid development of such systems has attracted
researchers' attention to optimize performance and to minimize as much as possible the problems and disadvantages they suffer
in order to improve their performance in proportion to the volume of tasks entrusted to them.

There are many major challenges facing real-time systems, which are mainly the problem of task scheduling on processor nuclei
in the quantity of multi-core processors. Several methods have been proposed, including the general method, where any task can
be executed on any kernel, the split method depends on the allocation of a specific kernel for each specific set of tasks. There is
also the semi-fragmented method, which is a hybrid of the two previous methods, where a set of tasks is assigned to be executed
on a particular kernel, while other functions are allowed to execute on any nucleus of the nucleus Treatment.

In this paper we compare the performance of random task scheduling algorithms on a multi-core platform in order to determine
the best algorithm in terms of a set of parameters adopted by researchers in this field, which in turn gives us precise details about
the quality of such algorithms when applied to a set of distributed random tasks The unified logarithmic probability.

The simso simulator, which has proven the reliability of high performance by many researchers in this field as well as provides the
possibility of generating tasks according to specific probability distributions, and simulates accurate details in-depth characteristics
of random tasks.

Keywords--Scheduling, Random Tasks, Multi-Core Processor, Probability Distribution.

—————————— ——————————

1 INTRODUCTION
A real-time system performs a set of tasks. The task is

defined as the basic implementation unit in the program, which
results in the execution of a given result and constitutes a basic
service from the services provided by any real-time system or
application [1].

Sporadic Tasks are an important part of the software control
systems and are present in most real-time systems such as fire
alarms at a particular facility. But the main problem is usually
the speed of response to such tasks when they are received
because they are randomly generated without breaks but
sometimes it is possible to predict roughly when these tasks
will occur [2].

2 The importance of the research and its
objectives:

The main objective of this research is to test the scalability of
random tasks when applying a set of algorithms used in
scheduling on a real-time operating system which consists of a
set of periodic tasks in order to access algorithms capable of
respond to random tasks when they are received and

implemented in a way that ensures that the time constraint
associated with this [3] type of task is not exceeded.

The SIMSO is used as an effective simulator by many
researchers in this field because it simulates accurate details
that delve deeper into random tasks such as predictability of
repetition times [4] or the possibility of subjecting these times
to a given probability distribution.

3 Research methods and materials:
The following is a brief description of the nature of the real-time

system in terms of the characteristics of the tasks in it, as well as the
characteristics related to the hardware of the system processor,
memory and so on[5].
3.1 Processor Architecture

The processor used in this system is the multi-core
processor, which is the architecture of modern models of
processors, which was addressed after the emergence of the
problem of inability to increase the frequency of a single-core
processor to a high value enables us to obtain high performance
and effective[6], as each increase Above the highest frequency
reached result in additional problems that are deepened by the
emergence of a number of parasitic capacities that usually arise
in electronic circuits at high frequencies[7], and effective

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019 523
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

synchronization between the elements and gates in the
processor circuit is difficult due to the time delay caused by the
work of some In the logical processor and accounts. [8] [4]

Figure (1) shows the architecture of the multi-core
processor, where we observe how the cores are placed in
addition to the cache memory at different levels[9][10].

Figure (1) shows the architecture of the multi-core processor

3.2 Sporadic Tasks Model:
The sporadic tasks used in this research follow the following

model, where each task is assigned a set of distinct parameters:
[11] [7]

1. Time of receipt of the assignment: It is described as the
time when a notice or notification of a new event is
reported in the real-time system[12], and two events
are not required at the same time for this type of task:

 ∀𝐴𝐴,𝐵𝐵 ∈ 𝐸𝐸 ⟹ 𝑡𝑡𝐴𝐴 ≠ 𝑡𝑡𝐵𝐵 …………………….……….(1)
2. The smaller interval (ε) between each successive

frequency of one or two different events is always
positive[13], ie:

∀𝐴𝐴1,𝐴𝐴2,𝐵𝐵 ∈ 𝐸𝐸 ⟹ |𝑡𝑡𝐴𝐴1 − 𝑡𝑡𝐴𝐴2| ≥ 𝜀𝜀 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑡𝑡𝐴𝐴1 − 𝑡𝑡𝐵𝐵| ≥ 𝜀𝜀..(2)
3. Execution Time It is the processor occupancy time by

task to execute [14].
4. Time constraint: It is described as the time during

which the task is to be carried out before it is reached
[15].

3.3 Simulation program used:
The SIMSO simulator was used in this research because it

has the following characteristics [16]:
1. Open source: Any file from the libraries contained in

this emulator can be modified, including files that
describe the work of scheduling algorithms. [17] [6]

2. Graphical User Interference [18]: It Provides a set of
menus and options that allow you to adjust the
simulation settings quickly and efficiently.

3. Supports the introduction of values for detailed
parameters within the simulation options, and
mention of these parameters[19]:

• Clock Hour Instruction (CPI per Instruction): This is
the number of rotations required to perform each of the
instructions included in the task.

• Instruction Number [20]: The number of instructions that
the task contains, since the task can sometimes contain
more than one instruction [21].

• Memory Access Rate [22]: The ratio between the numbers
of generalizations that require access to memory relative
to the number of quantitative instructions, called MIX. [23]
[20]

• Stack Distance Profile (SDP): It includes the distribution of
the various cache contents called Cache Lines in the cache
memory and is measured by the number of unique Cache
Lines that separate two consecutive accesses to the same
Cache Line.
4. It is written in the Python language, which is one of the

advanced programming languages. It also supports
Object Oriented Programming (Object Oriented
Programming)

5. It also supports an interactive graphical interface that
allows the user to use the emulator without having to
install the software on the operating system. And
figure (2) shows the interactive graphical interface on
the Internet [8].

Figure 2 shows the graphical interface of the SIMSO simulator

4 Results and discussion:
Three different scenarios were studied, including three
algorithms:

4.1 PD2 (Pseudo Deadline) algorithm
4.2 EARF (Earliest Deadline First) algorithm
4.3 LREF (Largest Local Remaining Execution time

First) algorithm[11]
In the first scenario, simulations are carried out on two

nuclei, in the second scenario on four nuclei, and in the third

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019 524
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

scenario on eight nuclei. Taking into account the following
parameters:

1. Each kernel contains L1 cache, 4 kb cache, 1 cycle and
9 cycle cost.

2. L2 Cash shared between all nuclei of 64 kb and 10 cycle
time and cost of loss of 90 cycle.

3. (1 cycle = 1 nano second), considering that (100 cycles)
in RAM are the cost of access

4. Cost of context switching (100 cycles).
 Table (2) also shows Sporadic Tasks with its parameter values

[10].
Table (1) shows random tasks

Results were compared based on the following parameters:

• Load CPU processor: The amount of time the processor is
busy performing for the quantum time of simulation.

• Context Switching Overheads: This includes the elapsed
time until a task that is currently being performed is
assigned another task of higher priority than the current
task, resulting in the saved task status and loading the
processor recorders with new values for the other task
[13].

• Scheduling Overheads: The time consumed by the
processor includes a new event that calls the scheduler call
to make a scheduling decision and the consequent
processing of some operations so that it can make the
scheduling decision [14].

4.4 The first scenario:
In this scenario, the application of the three scheduling

algorithms mentioned above was simulated on a set of random
tasks. Figures (3), (4) and (5) compared the three scheduling
algorithms in terms of processor load [20], load of context
switching operations and scheduling workloads on the two.

Figure (3) Comparison in terms of processor load.

Figure (4) shows the comparison in terms of context switching loads

Figure (5) shows the comparison between scheduling loads

4.5 The second Scenario:
In the second scenario, the psychological steps taken in the

first scenario were followed but with four nuclei. Figures (6), (7)
and (8) show the comparison of the three scheduling algorithms
in terms of processor load[23], load of context switching
operations, when working on a fourth point.

Figure (6) shows the comparison in terms of processor load

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019 525
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Figure (7) shows the comparison in terms of context switching loads

Figure (8) shows the comparison in terms of scheduling load

4.6 The third Scenario:
In this scenario, the psychological steps in the first scenario

were followed but with eight nuclei. Figures (9), (10) and (11)
show the comparison between the three scheduling algorithms
in terms of processor load [22], the burden of context switching
operations, when working on eight nuclei.

Comparison of the performance of random task scheduler
algorithms in real time systems [21].

Figure (9) shows the comparison in terms of processor load

Figure (10) shows the comparison in terms of context switching loads

Figure (11) shows the comparison in terms of scheduling load

5 Conclusions and recommendations:
5.1 Conclusions:

We conclude by looking at the results in the three scenarios
studied:

1 The LLREF algorithm gives us better performance than
the rest of the algorithms in terms of processor load.
The average load rate of each kernel decreases with the
increase in the number of nuclei significantly
compared to the decrease in the rest of the algorithms.

2 Process load from context switching is small in the
LLREF algorithm compared to other algorithms, while
the burden is greater in the PD2 algorithm because this
algorithm is restricted to time periods unlike the
LLREF algorithm in event-based.

3 The load from scheduling increases in the LLREF
algorithm slightly with the increase in the simulation
time, while this increase is more noticeable in the rest
of the algorithms due to the large number of times the
scheduler calls to make the scheduling decision in the
other algorithms.

4 The LLREF algorithm has better characteristics than
other algorithms when compared with the three
parameters mentioned above due to the dynamic

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019 526
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

performance of this algorithm with the various task
types as well as the top of events that are triggered
when scheduling a selected random set of tasks
compared to other algorithms.

5.2 Recommendations:
According to the results of the research and according to the

scenarios studied, the study can be expanded by increasing the
number of studied nuclei or by increasing simulation times. The
algorithm that achieved the best results in this study can be
compared and studied with more algorithms not studied in
order to teach more about performance this algorithm and
work to meet the defects that may arise from the experimental
study, if any.

ACKNOWLEDGMENT
For all those who contributed to the success in ascending
The level of algorithms and enable access to the real time
And thanks to the Iraqi University / Faculty of Engineering
Thanks to its software development environment.

REFERENCES

[1] AMJAD MAHMOOD SALMAN A. KHAN Energy-Aware Real-
Time Task Scheduling in Multiprocessor Systems Using a Hybrid
Genetic Algorithm [Article] // Electronics,. - May 19, 2017. - Volume 6. -
2.
[2] Anjaria K., & Mishra, A. Thread scheduling using ant colony
optimization: An intelligent scheduling approach towards minimal
information leakage [Article] // leakage. Karbala International Journal
of Modern Science. - 2017. - pp. 241-258.
[3] ANKUR J. Multishare Task Scheduling Algorithm For Real Time
Microcontroller Based Application [Article] // Mechatronics and
Applications: An International Journal (MECHATROJ). - 2015. - 1 : Vol.
1.
[4] Baek H., Lee, J., Lee, J., Kim, P., & Kang, B. B. Real-Time
Scheduling for Preventing Information Leakage with Preemption
Overheads [Article] // Advances in Electrical and Computer
Engineering. - 2017. - pp. 123-133.
[5] CHARU R., & MANJUGODARA, M Real Time System
Scheduling Algorithms & Fault Tolerance [Article] // International
Journal of Advanced Research in Computer and Communication
Engineering. - 2015. - vol. 4. - Vol. Issue 7.
[6] Dan McNulty Lena Olson, Markus Peloquin A Comparison of
Scheduling Algorithms for Multiprocessors [Article] // University of
Maryland. - December 13, 2010. - p. 17.
[7] GIRISH S. THAKARE, PRASHANT D. R. and DESHMUKH R.
Performance Analysis of Real Time Task Scheduling Algorithm
[Article] // International Journal of Innovative Research in Computer
and Communication Engineering IJIRCCE. - 2017. - pp. 11866-11869.
[8] GOKULSIDARTHTHIRUNAVUKKARASU* RAGIL KRISHNA
Scheduling Algorithm for Real-Time Embedded Control Systems Using
Arduino Board [Conference] // KnE Engineering | The International
Conference on Design and Technology. - Australia : Deakin University,
School of Engineering, Waurn ponds, Australia, 2017. - pp. 258-266.

[9] I. Xu ،M. ،Phan ،LTX ،Sokolsky ،O. ،Xi ،S. ،Lu ،C. ،Gill ،C. ،& Lee ،
Cache-aware compositional analysis of real-time multicore
virtualization platforms [Article] // Real-Time Systems. - November
2015. - pp. pp 675–723.
[10] JAIN Ankur and GODFREY W. Wilfred. Multishape Task
Scheduling Algorithm For Real Time MicroController Based
Application [Article] // Mechatronics and Applications: An
International Journal (MECHATROJ). - 2015.
[11] Lakshmanan K. S. Scheduling and Synchronization for Multi-
core Real-time Systems [Report]. - [s.l.] : Carnegie Mellon University
Pittsburgh, PA, 2011. - Doctoral dissertation,.
[12] Levin G., Funk, S., Sadowski, C., Pye, I., & Brandt, S. DP-FAIR: A
simple model for understanding optimal multiprocessor scheduling
[Conference] // In 2010 22nd Euromicro Conference on Real-Time
Systems .. - [s.l.] : IEEE, 2010. - pp. pp. 3-13.
[13] LINLINTANGA KAIQIANG MA, ZUOHUA LI A New
Scheduling Algorithm Based on Ant Colony Algorithm and Cloud
Load Balancing [Article] // Harbin Institute of Technology Shenzhen
Graduate School Shenzhen, China. - 2016.
[14] PERONAGLIO Fernanda F., et al. Modeling Real-Time
Schedulers For Use In Simulations Through A Graphical Interface
[Conference] // ANSS '17 Proceedings of the 50th Annual Simulation
Symposium. - Virginia : [s.n.], 2017.
[15] Pradhan S. R., Sharma, S., Konar, D., & Sharma, K. A comparative
study on dynamic scheduling of real-time tasks in multiprocessor
system using genetic algorithms [Article] // International Journal of
Computer Applications. - 2015. - Volume 120. - No.20.
[16] Qamhieh M. Scheduling of parallel real-time DAG tasks on
multiprocessor systems [Report] : Doctoral dissertation. - Paris :
Université Paris-Est, 2015.
[17] RADHAKRISHNA NAIK el Periodic and Aperiodic Real -Time
Task Scheduling Algorithms Simulator [Article] // International Journal
of Pure and Applied Mathematics. - 2017. - pp. 2681-2687.
[18] Rochange Christine. Parallel real-time tasks, as viewed by WCET
analysis and task scheduling approaches [Conference] // International
conference proceedings. - [s.l.] : Institut de Recherche en Informatique
de Toulouse - IRIT (Toulouse, France) - TRACES, 2016. - pp. 1-11.
[19] Schoeberl M., Pezzarossa, L., & Sparsø, J. A multicore processor
for time-critical applications [Article] // IEEE Design & Test. - 2018. -
35. - 2. - pp. 38-47.
[20] SHINDE Vijayshree and BIDAY Seema C. Comparison of Real
Time Task Scheduling Algorithms [Article] // International Journal of
Computer Applications. - 2017. - pp. 37-41.
[21] Strong R., Mudigonda, J., Mogul, J. C., Binkert, N., & Tullsen, D.
Fast Switching of Threads between Cores [Article] // ACM SIGOPS
Operating Systems Review. - 2009. - pp. 35-45.
[22] TRAN Hai Nam Cache Memory Aware Priority Assignment and
Scheduling Simulation of Real-Time Embedded Systems [Report] : PhD
Thesis. - [s.l.] : Brest., 2017.
[23] Xi S., Xu, M., Lu, C., Phan, L. T., Gill, C., Sokolsky, O., & Lee, I.
Real-time multi-core virtual machine scheduling in xen [Conference] //
In 2014 International Conference on Embedded Software (EMSOFT) . -
[s.l.] : IEEE., 2014. - pp. pp. 1-10.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019 2
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

IJSER

http://www.ijser.org/

	[1] AMJAD MAHMOOD SALMAN A. KHAN Energy-Aware Real-Time Task Scheduling in Multiprocessor Systems Using a Hybrid Genetic Algorithm [Article] // Electronics,. - May 19, 2017. - Volume 6. - 2.

